全部
资讯
产品
关注微信
关注微博
新闻头条
军桥杂志
首页
国防信息化
智慧军营
通讯指挥
大屏显控
虚拟仿真
加固计算机
安防监控
信息安全
云计算
物联网
无人机
OA数码
军工电子
作训装备
媒体展会
热点
技术
方案
产品
违规手机
账外机
手机管控
电子沙盘
军事体育训练
智慧训练
智慧军营
数字化营区
龙勃透镜
目标隐真
电子对抗
仿真训练
电台模训
专网通信升级
迅时通信
无线通信
Mesh自组网
北斗短报文
应急无线通信
战术训练
虚拟训练
更多
云计算
|
解决方案
|
技术应用
|
行业资讯
|
云计算热点
|
云计算产品
首页
>
云计算
>
技术应用
> 正文
技术生态异军突起,昇思MindSpore进入AI框架第一梯队
2023-02-23 09:15:14
来源:Alter聊科技
ChatGPT掀起的新一轮人工智能狂欢下,隐藏在背后的“大模型”正进入越来越多开发者的视野。
诚如几年前开始流行的一种说法:数据是燃料、模型是引擎、算力是加速器。ChatGPT的出现,恰如其分地诠释了数据、模型和算力的“化学反应”。而在其中扮演“桥梁”角色的,恰恰是上承应用、下接硬件的AI框架。
正是在这样的背景下,市场调研机构Omdia通过对AI开发者进行调研,在日前发布了《中国人工智能框架市场调研报告》,向外界揭示了国内开发者对于AI框架的认知,以及不断变化的行业格局。
01开发者眼中的AI框架市场
随着ChatGPT的热度越来越高,不少人坦言:“人工智能领域正在引发新一轮科技竞赛”,其实AI的学术竞赛在2020年前后就已经开始。
OpenAI在这一年推出了著名的GPT-3,拥有1750亿参数量;DeepMind的AlphaFold2在第14届国际蛋白质结构预测竞赛中夺冠;同时全球AI论文发表量逐年增长,来自中国的论文比例越来越高...... 顶会论文、大模型、科学智能代表的技术生态,达到了前所未有的热度。
同样是在2020年,以昇思MindSpore等为代表的中国AI框架纷纷开源,开始了追赶TensorFlow、PyTorch等前辈们的追逐赛,中国AI框架的崛起和技术生态的繁荣,不可避免地出现了交叉。
就像Omdia在《中国人工智能框架市场调研报告》中给出的观点:在大模型应用的趋势下,国内开发者对于AI框架的认知发生了一些微妙的变化。
比如“对于超大规模模型训练能力,您觉得哪个人工智能框架最好?”的问题中,36%的开发者投票给了TensorFlow/JAX,15%的开发者选择的是PyTorch,昇思MindSpore以10%的占比排名第三。
需要说明的是,开发者的答案在某种程度上受到了认知习惯的影响,自然而然地给“老牌框架”打了高分。譬如谷歌的TensorFlow并非原生支持大模型,通过新推出的另一个新生框架JAX作为TensorFlow的简化库融入;PyTorch则是靠第三方并行算法库补充了大模型支持能力。昇思MindSpore正依托原生支持大模型的能力快速崛起。
再比如“您认为最适合做AI for Science项目的人工智能框架是?”的问答下,TensorFlow和新生框架JAX收到了45%的开发者支持,昇思MindSpore在这个问题下超过了PyTorch,以37%的支持率排名第二。
而在人工智能框架使用率的排名中,TensorFlow和PyTorch的先发优势依然存在,但昇思MindSpore以11%的份额进入第一梯队。TensorFlow早在2015年就已经开源,PyTorch的历史也可以追溯到2017年,昇思MindSpore比“前辈”们晚了三到五年,但表现出了快速赶超老牌AI框架的态势,扮演了“挑战者”的角色。
如果说Omdia的报告主要是基于开发者的认知,可能与实际情况存在一定出入,那硬核的技术生态与行业生态的合作,则以板上钉钉的数字佐证着昇思MindSpore等中国AI框架崛起态势:
在技术生态方面,昇思MindSpore已经与200多所高校、科研机构展开创新合作;在行业生态方面,仅在2022年获得昇思技术认证的企业就超过800多家,涵盖制造、金融、电信运营商等国计民生行业;在开源生态方面,昇思MindSpore在Gitee AI开源项目综合排名TOP1,软件下载增速第一,总量已超过370万……
02昇思MindSpore越级的时与势
一个残酷但有现实意义的现象是,2020年AI框架市场还是一幅百家争鸣的景象,目前却出现了典型的虹吸效应。
按照Omdia的调研数据,在中国人工智能框架的使用率方面,TensorFlow、PyTorch、昇思MindSpore和飞桨合计占了86%的市场份额,大多数AI框架的使用率不足1%,曾经声名鹊起的Caffe、CNTK等已逐渐掉出主流队伍,只有昇思MindSpore一家逆势进入了AI框架的第一梯队。
想要弄清问题的答案,昇思MindSpore可以说是最好的研究对象。过去近三年时间里,昇思MindSpore到底做对了什么?
第一个参考答案是大模型的“时”。
2021年9月的华为全联接大会上,昇思MindSpore迭代至1.5版本,最直接的变化就是原生支持AI大模型训练,通过全自动并行、可视化智能调优等大幅提升了大模型的开发效率。
其中在大模型并行训练上,昇思MindSpore支持数据并行、MoE并行、优化器并行、多副本并行等7大并行计算能力,将训练千亿模型的代码量降低了80%、调优时间下降60%;和TensorFlow、PyTorch等框架相比,昇思MindSpore是支持模型结构最全的AI框架,包含稠密、稀疏MoE、卷积结构、高维稀疏等。
第二个参考答案是应用创新的“势”。
2022年11月发布的2.0版本中完成了AI与HPC的融合,通过神经网络模拟的非线性拟合,让科学家无需再解高维方程,进一步提升了科技创新效率。特别是在产业应用创新方面,昇思MindSpore构建了流体仿真、电磁仿真、分子模拟在内的科学计算套件,持续使能应用创新。
和PyTorch的兴起不谋而合,昇思MindSpore也将技术生态作为“先手棋”。印证昇思MindSpore “路线正确”的案例,绝不止Omdia的报告和开发者的认同,还有一份沉甸甸的成绩单。
衡量创新能力的一个重要标准正是论文数量。按照Papers with Code网站的统计数据,2022年使用昇思MindSpore的顶级会议论文已经超过600篇,在国内AI框架中排名第一,在全球范围内仅次于PyTorch。
而在大模型的创新中,目前国内科研院所和高校已经发布了10多个基于昇思MindSpore的大模型。其中紫东.太初是全球首个三模态大模型,能够实现视觉、文本、语音三个模态间的高效协同,曾在2022世界人工智能大会上斩获“卓越人工智能引领者”奖;东方.御风是业界首个工业级流体仿真大模型,在进行飞机流场模拟仿真时,对比传统的科学计算,在精度一样的情况下,东方.御风的仿真时间只需要原来的1/25。
如果把人工智能产业生态比喻成森林的话,人工智能框架就像是森林中的土壤,寻求创新的开发者自然会“择水土而居”。
03不应被忽视的可信AI问题
在全民“调戏”ChatGPT的风潮中,ChatGPT有时会“一本正经地胡说八道”,这其实暴露了存在事实性错误、知识盲区和常识偏差等诸多问题。
Omdia在《中国人工智能框架市场调研报告》中向开发者询问了类似的问题,最终的答案似乎超出了一些人的料想:在所有主流人工智能框架中,国内的开发者普遍认为TensorFlow 与 昇思MindSpore 对“负责任的人工智能”提供的支持最好。
个中原因其实不难解释。为了打消开发者担心的安全隐私等问题,谷歌通过Model Cards等工具让框架更加透明、更具备可解释性,同时TensorFlow也提供了一系列支持数据安全和隐私的功能、库和培训工具。
昇思MindSpore之所以能够在可信方面超越PyTorch,离不开对AI安全技术体系的布局,提供了涵盖AI训练、AI测评、AI部署的一整套端到端的安全可信体系,包括联邦学习、模型水印、模型加密等外界所熟知的可信机制。
比如联邦学习是一种常见的隐私保护方式,可以在不收集数据的情况下协同进行模型的训练,实现数据的“可用不可见”,继而保护隐私信息。然而联邦学习和大模型的结合也产生了诸多挑战,涉及到计算代价、通信开销、隐私泄露、模型安全等等,需要解决隐私保护与效率的两难课题。
昇思MindSpore的回答是跨域可信训练。
以鹏城.盘古大模型为例,昇思的联邦学习能力助力盘古超大模型协同训练,根据各地算力情况将大模型拆分,以AI计算中心超大算力实现盘古主干网络的正反向训练,同步在银行等计算机房做数据处理,模型Embedding、TOP层算Loss正反向训练,实现了敏感数据不出本地,并让联邦学习的训练时延降低了30%、通信和计算开销降低了40%。
就像Omdia在报告中的评论:“负责任的人工智能”既是一套道德准则,又是一套技术体系, 是以安全、可靠和合乎道德的方式开发、评估、部署和规模化人工智能系统的方法,对人工智能的可持续发展非常重要。
大模型、科学智能等技术生态在过去三年时间里深入影响了开发者对AI框架的选择,把时间再拉长一些的话,能否在可信AI方面有所作为,能否打消开发者的疑虑,无疑将左右AI框架下一个三到五年的市场排位。
04写在最后
人工智能的星星之火能否燎原,AI框架有着不可或缺的作用。
一座城市的繁荣,不在于有多高的摩天大楼,而是无处不在的建筑群。沿循这样的逻辑,AI框架的价值在于赋予不同的开发者“建造高楼”的能力,让人工智能的前沿能力进入每一个行业、每一家企业。
至少,以昇腾AI为首的中国人工智能产业建设者早已开始发力。
不只是昇思MindSpore在技术生态上的异军突起,Atlas系列硬件、异构计算架构CANN、昇腾应用使能MindX等软硬件也在持续创新,为开发者打造了“端、边、云”的全场景AI基础设施,让人工智能在千行百业不断扩散。
关键词:
昇思
MindSpore
AI框架
上一篇:
云南移动打造基于昇腾的云南移动AI算力打造基于昇腾的AI算力网络平台,赋能千行百业智能化转型网络平台
下一篇:
最后一页
索取“此产品”详细资料,请留言
*姓名:
*手机:
*邮寄地址:
相关阅读
<
热点文章
openEuler 24.03 LTS 正式发布,麒麟信安同步推出服务器操作系统V3.6.1,共启繁荣发展新篇章
1
国产电台的进化史
2
部队指挥中心、多媒体会议系统、营区广播综合系统简介
3
好视通视频会议系统解决方案
4
深度基于大数据的军事情报分析与服务系统架构研究
5
智慧教室UClass智慧教学平台线上直播指南,请查收!
6
等保宣贯在新疆 | 网络安全人人有责,等保宣贯进兵团
7
水下通信技术最新发展动态研究
8
应急指挥车解决方案
热点技术
云计算 云集万维,服务未来
数据中心可视化运维管理系统
拟态分布式文件存储设备
云计算在军队信息化建设中的应用
在线学习室产品选型论:PC还是云桌面?---“军事职业教育”在线学习室建设思考与分析
【信服博士谈存储】海量非结构化数据存储中的小对象合并技术
银河麒麟云平台软件
大数据技术,发展趋势如何?
突破性能极限,阿里云神龙最新解读
弱电机房综合布线如何设计与施工?
数据中心可视化运维管理系统
大数据引发混合云井喷 四大场景与三大技术
热点方案
国产电台的进化史
部队指挥中心、多媒体会议系统、营区广播综合系统简介
好视通视频会议系统解决方案
深度基于大数据的军事情报分析与服务系统架构研究
水下通信技术最新发展动态研究
应急指挥车解决方案
李德仁院士PPT:时空大数据的社会化应用及智能处理
国外微/小型系留气球概述
产品推荐
麒麟信安云桌面系统
麒麟信安超融合一体机
QNAP推出四款大容量机架式NAS专用机
L640系列龙腾服务器
异构计算云平台 SC-HCCP
Citrix 虚拟桌面 解决方案